The Sustainability of State and Local Government Pensions: A Public Finance Approach

Jamie Lenney, Bank of England
Byron Lutz, Federal Reserve Board of Governors
Finn Schuele, Brown University
Louise Sheiner, Brookings Institution

NCPERS 2020 Public Pension Funding Forum
September 2020
Disclaimers

Federal Reserve Disclaimer

The opinions expressed are those of the authors and do not necessarily express the opinion of the Board of Governors of the Federal Reserve.

Bank of England Disclaimer

This paper should not be reported as representing the views of the Bank of England or members of the Monetary Policy Committee, Financial Policy Committee, or Prudential Regulation Authority Board.
Introduction

• Topic: Fiscal sustainability of state and local gov. pensions
• Questions:
 • Are state and local pensions fiscally sustainable under current benefit and funding levels?
 • If not, what is required to make them sustainable?
Preview of Conclusions

• In aggregate, pensions can be stabilized with moderate fiscal adjustments assuming moderate asset return assumptions

• Only moderate returns to stabilizing immediately versus in the future (e.g. 10 years in future)

• Lots of heterogeneity and some plans are far from stable

• COVID-19 shock: If low interest rates persist, stabilization is relatively more challenging
Background

- Discount rate required to value liabilities
- Pensions use rate of return on risky asset → high discount rate
- Principles of financial valuation suggest discount rate should reflect riskiness of payments (Modigliani and Miller 1958)
- Pensions have strong legal protections → low discount rate (Novy-Marx and Rauh 2009; Brown and Wilcox 2009)
Concern over Sustainability

- Lower discount rates increase pension liabilities
 - Unfunded pension liabilities ≈ $4 trillion (Rauh 2017 & FA)
 - 50% funding ratio
- Unfunded liabilities → widespread sustainability concerns
 - Plans have failed to “provide economic security in old age in a financially sustainable way” (Novy-Marx & Rauh 2014)
Fiscal Sustainability

• Prefunding not required for fiscal sustainability
• Fully unfunded pay-as-you-go (paygo) pension systems can be sustainable
 • e.g. Samuleson (1958)
• PAYGO sustainable if internal rate of return does not exceed the growth rate of the wage base (labor force growth + productivity growth)
• Context: U.S. Social Security can be viewed as a PAYGO system
Sustainability of PAYGO

• Stable PAYGO can become unsustainable if
 1. Demographic or economics changes increase outlay growth and/or lower revenue growth
 2. Policymakers increase benefits
• Blended system – partially PAYGO and partially prefunded – can be stable in face of these shocks
• Most S&L pensions have effectively long been blended systems
Caution Required

- We analyze pension sustainability from perspective of sustainability
- Caution required
 - Of course some plans are clearly not on a sustainable path
 - Partial PAYGO viewpoint relatively more appropriate for states than localities
Appropriateness of Sustainability Focus

Our focus on sustainability, as opposed to the more typical focus on a full funding benchmark, is useful and appropriate:

1. Answers question of whether public pensions will spark a crisis
 ◦ Failure to fully prefund need not spark a crisis

2. Consistent with history: In aggregate, plans have always operated well short of full prefunding
Methodology

• Analyzing sustainability requires benefit cash flows

• Actuarial reports provide the pension liability and actuarial assumptions

• Reverse engineer cash flows
 • Method pioneered by Novy-Marx and Rauh (2011, 2014)
 • Used in Lutz and Sheiner (2014)
 • Sample of 40 plans – observationally similar to universe of S&L pensions
Sustainability Analysis

• Assume plans maintain current contribution as share of payroll
• Discount the value of the liabilities at a risk-free rate
• Consider 3 deterministic rates of return on pension assets based on historic rates of return
 • 1% real return = risk-free rate
 • 5% real return = expected rate
 • 3% real return = middle ground
• Does not account for COVID-19 shock
Exhaustion Dates: One way of assessing sustainability

In aggregate, plans don’t exhaust (hit zero assets) for about 25 years under a 1% rate of return, and not until after 40 years under 3%.

At 5% real return, plans are overfunded on average.
Exhaustion Dates: Heterogeneity Across Plans

Percent of Total Liabilities in Plans that Exhaust their Assets over Various Time Horizons

Real Rate of Return: 1%, 3%, 5%
Sustainability Analysis: COVID-19 Shock

• COVID-19 economic shock

 • Lower interest rates
 • - 0.4% real return = risk-free rate
 • 3.6% real return = expected rate
 • 1.6% real return = middle ground

• Lower GDP over medium-term
Exhaustion Dates: Post-COVID-19 Rates of Return

Post-COVID scenario:

Slower employment growth

Real rates of return: -0.4%, 1.6%, 3.6%
Making Pensions Sustainable

2 Stabilization Exercises

Choose one-time permanent change in contributions:

1. **Long-run**: Debt as share of GDP is constant in long run (without regard to the level)

2. **30-year Medium-run**: Return to today’s debt-to-GDP ratio by the end of 30 years
Contribution to Stabilize Implicit Debt in Long-Run

Increase in contribution rate required if changes are made (percent of payroll):

<table>
<thead>
<tr>
<th>Real rate of return</th>
<th>Today</th>
<th>In 10 years</th>
<th>In 20 years</th>
<th>In 30 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>11.20%</td>
<td>10.68%</td>
<td>9.98%</td>
<td>9.23%</td>
</tr>
<tr>
<td>3%</td>
<td>5.81%</td>
<td>6.62%</td>
<td>7.53%</td>
<td>8.46%</td>
</tr>
<tr>
<td>5%</td>
<td>-2.01%</td>
<td>-2.72%</td>
<td>-3.75%</td>
<td>-5.09%</td>
</tr>
</tbody>
</table>

At 3% return, contribution increase about 6% of payroll today. Rises less than 1 pp if delay 10 years.
Implicit Debt to GDP Returns to Today’s Level in Year 30

<table>
<thead>
<tr>
<th>Real rate of return</th>
<th>Implicit Debt Gets Back to Today's Level in 30 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Today</td>
</tr>
<tr>
<td>1%</td>
<td>13.10%</td>
</tr>
<tr>
<td>3%</td>
<td>4.96%</td>
</tr>
<tr>
<td>5%</td>
<td>-3.53%</td>
</tr>
</tbody>
</table>

- At 3% return, contribution increase about 5% of payroll today. Rises to only 7% if delay 10 years.
- Delay causes contribution to increase, because have to not just stabilize but pay down debt.
- At 5% return, can decrease contributions.
Implicit Debt to GDP Returns to Today’s Level in Year 30

<table>
<thead>
<tr>
<th>Real rate of return</th>
<th>Implicit Debt Gets Back to Today's Level in 30 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Today</td>
</tr>
<tr>
<td>1%</td>
<td>13.10%</td>
</tr>
<tr>
<td>3%</td>
<td>4.96%</td>
</tr>
<tr>
<td>5%</td>
<td>-3.53%</td>
</tr>
</tbody>
</table>

- At 3% return, contribution increase about 5% of payroll today. Rises to 7% if delay 20 years.
- Delay causes contribution to increase, because have to not just stabilize but pay down debt.
- At 5% return, can decrease contributions.
Full Funding Requires Much Larger Adjustments

<table>
<thead>
<tr>
<th>Real rate of return</th>
<th>Fully Funded 30 Years from today</th>
<th>Implicit Debt Gets Back to Today's Level in 30 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Today</td>
<td>In 10 years</td>
</tr>
<tr>
<td>1%</td>
<td>41.81%</td>
<td>44.87%</td>
</tr>
<tr>
<td>3%</td>
<td>26.57%</td>
<td>28.43%</td>
</tr>
<tr>
<td>5%</td>
<td>12.40%</td>
<td>10.69%</td>
</tr>
</tbody>
</table>
Sustainability Pre-Post Covid-19

Rates of Return

<table>
<thead>
<tr>
<th>Pre-COVID:</th>
<th>Real rates of return:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%, 3% and 5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-COVID:</th>
<th>Real rates of return:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-.4%, 1.6%, 3.6%</td>
</tr>
</tbody>
</table>

Contribution Change Required to Achieve Stability

<table>
<thead>
<tr>
<th>Percent of Payroll</th>
<th>Long-Run</th>
<th>Same Debt/GDP in 30 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-COVID</td>
<td>Post-Covid</td>
</tr>
<tr>
<td>Asset Returns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>low</td>
<td>11.20%</td>
<td>10.60%</td>
</tr>
<tr>
<td>medium</td>
<td>5.81%</td>
<td>9.46%</td>
</tr>
<tr>
<td>high</td>
<td>-2.01%</td>
<td>3.50%</td>
</tr>
</tbody>
</table>
Conclusions

• In aggregate, plans can become sustainable with moderate changes in funding assuming moderate asset returns

• Delaying stabilization increases contribution change needed by only moderate-to-small amount

• Significant heterogeneity

• If Post-COVID-19 interest rates persist, stabilization is more challenging
Thank you!

Comments welcome:

Byron.f.lutz@frb.gov